- BARISAN ARITMATIKA
U1, U2, U3, .......Un-1, Un disebut barisan aritmatika, jika U2 - U1 = U3 - U2 = .... = Un - Un-1 = konstanta
Selisih ini disebut juga beda (b) = b =Un - Un-1
Suku ke-n barisan aritmatika a, a+b, a+2b, ......... , a+(n-1)b U1, U2, U3 ............., Un
Rumus Suku ke-n :
Un = a + (n-1)b = bn + (a-b) ® Fungsi linier dalam n
- DERET ARITMATIKA
a + (a+b) + (a+2b) + . . . . . . + (a + (n-1) b) disebut deret aritmatika.
a = suku awal b = beda n = banyak suku Un = a + (n - 1) b adalah suku ke-n
Jumlah n suku Sn = 1/2 n(a+Un) = 1/2 n[2a+(n-1)b] = 1/2bn² + (a - 1/2b)n ® Fungsi kuadrat (dalam n)
Keterangan:
- Beda antara dua suku yang berurutan adalah tetap (b = Sn")
- Barisan aritmatika akan naik jika b > 0
Barisan aritmatika akan turun jika b < 0
- Berlaku hubungan Un = Sn - Sn-1 atau Un = Sn' - 1/2 Sn"
- Jika banyaknya suku ganjil, maka suku tengah
Ut = 1/2 (U1 + Un) = 1/2 (U2 + Un-1) dst.
- Sn = 1/2 n(a+ Un) = nUt ® Ut = Sn / n
- Jika tiga bilangan membentuk suatu barisan aritmatika, maka untuk memudahkan perhitungan misalkan bilangan-bilangan itu adalah a - b , a , a + b
- Barisan dan Deret Geometri (Ukur / Kali)
Matematika Kelas 2 >Barisan dan Deret |
- BARISAN GEOMETRI
U1, U2, U3, ......., Un-1, Un disebut barisan geometri, jika
U1/U2 = U3/U2 = .... = Un / Un-1 = konstanta
Konstanta ini disebut pembanding / rasio (r)
Rasio r = Un / Un-1
Suku ke-n barisan geometri
a, ar, ar² , .......arn-1 U1, U2, U3,......,Un
Suku ke n Un = arn-1 ® fungsi eksponen (dalam n)
- DERET GEOMETRI
a + ar² + ....... + arn-1 disebut deret geometri a = suku awal r = rasio n = banyak suku
Jumlah n suku
Sn = a(rn-1)/r-1 , jika r>1 = a(1-rn)/1-r , jika r<1 ® Fungsi eksponen (dalam n)
Keterangan:
- Rasio antara dua suku yang berurutan adalah tetap
- Barisan geometri akan naik, jika untuk setiap n berlaku
Un > Un-1
- Barisan geometri akan turun, jika untuk setiap n berlaku
Un < Un-1
Bergantian naik turun, jika r < 0
- Berlaku hubungan Un = Sn - Sn-1
- Jika banyaknya suku ganjil, maka suku tengah
_______ __________ Ut = Ö U1xUn = Ö U2 X Un-1 dst.
- Jika tiga bilangan membentuk suatu barisan geometri, maka untuk memudahkan perhitungan, misalkan bilangan-bilangan itu adalah a/r, a, ar
- DERET GEOMETRI TAK BERHINGGA
Deret Geometri tak berhingga adalah penjumlahan dari
U1 + U2 + U3 + ..............................
¥ å Un = a + ar + ar² ......................... n=1
dimana n ® ¥ dan -1 < r < 1 sehingga rn ® 0
Dengan menggunakan rumus jumlah deret geometri didapat :
Jumlah tak berhingga S¥ = a/(1-r) Deret geometri tak berhingga akan konvergen (mempunyai jumlah) untuk -1 < r < 1
Catatan:
a + ar + ar2 + ar3 + ar4 + ................. Jumlah suku-suku pada kedudukan ganjil a+ar2 +ar4+ ....... Sganjil = a / (1-r²)
Jumlah suku-suku pada kedudukan genap
a + ar3 + ar5 + ...... Sgenap = ar / 1 -r² Didapat hubungan : Sgenap / Sganjil = r PENGGUNAAN Perhitungan BUNGA TUNGGAL (Bunga dihitung berdasarkan modal awal)M0, M1, M2, ............., MnM1 = M0 + P/100 (1) M0 = {1+P/100(1)}M0M2 = M0 + P/100 (2) M0 = {1+P/100(2)} M0. . . .Mn =M0 + P/100 (n) M0 ® Mn = {1 + P/100 (n) } M0Perhitungan BUNGA MAJEMUK (Bunga dihitung berdasarkan modal terakhir)M0, M1, M2, .........., MnM1 = M0 + P/100 . M0 = (1 + P/100) M0M2 = (1+P/100) M0 + P/100 (1 + P/100) M0 = (1 + P/100)(1+P/100)M0 = (1 + P/100)² M0 . . . Mn = {1 + P/100}n M0Keterangan :M0 = Modal awal Mn = Modal setelah n periode p = Persen per periode atau suku bunga n = Banyaknya periode Catatan: Rumus bunga majemuk dapat juga dipakai untuk masalah pertumbuhan tanaman, perkembangan bakteri (p > 0) dan juga untuk masalah penyusutan mesin, peluruhan bahan radio aktif (p < 0). | |